If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=24x^2-336x+864
We move all terms to the left:
0-(24x^2-336x+864)=0
We add all the numbers together, and all the variables
-(24x^2-336x+864)=0
We get rid of parentheses
-24x^2+336x-864=0
a = -24; b = 336; c = -864;
Δ = b2-4ac
Δ = 3362-4·(-24)·(-864)
Δ = 29952
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{29952}=\sqrt{2304*13}=\sqrt{2304}*\sqrt{13}=48\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(336)-48\sqrt{13}}{2*-24}=\frac{-336-48\sqrt{13}}{-48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(336)+48\sqrt{13}}{2*-24}=\frac{-336+48\sqrt{13}}{-48} $
| 6x−35=3x+53∘ | | 2(x-2)-3(2x-1)=4 | | m-2/3=5/6 | | x-21/2=85/8 | | 12=|m+8| | | 11(x-3)+4(2x+1)=5(3x-)+13 | | w^2−w−20=0 | | w2−w−20=0 | | 4(x+1)+3(x+2)=7(x+1)-5 | | 8=x+7/3 | | 5/8+p=1/6 | | -6+(5-2m)=2-(1-3m) | | 6x+(2x-3)+(x-1)=76 | | 15-(d-4)=-100 | | 13-(5-4m)=-7+(2-m) | | 2(z+5)-2(5-z)=8 | | 3(2z-5)-3(1-2z)=12 | | -5p^2+8p-7=-6p^2+1+p | | q^2+5q=14 | | 4x+9-3x=-7x+6+5x | | 2^(x-3)=72 | | 2^x-3=72 | | X=5/3y+1 | | x^2+5x-22=-8 | | 5.2b+4.6=8.75 | | (9x+4)(2x^2-17x-9)=0 | | 1-(5/9x)=(9/6) | | 4(b=0.6)=5.6 | | 2(y+2)+2=29-(y+3) | | y9-14=19 | | 24x^2-320x+768=0 | | n8+10=34 |